Как быстро считать в уме: приемы устного счета больших чисел

Иван Иван Обновлено: 24 Июль 2018 131 074 9 Время чтения: 14 минут
Содержание
Содержание

    Образец
    Образец

    Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

    Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а  минимум двухзначными и трехзначными числами.

    После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

    Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью "Пределы для чайников" в нашем блоге.

    Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

    Гаусс и устный счет

    Карл Фридрих Гаусс
    Карл Фридрих Гаусс

    Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

    По его собственным словам, он научился считать раньше, чем говорить.  Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

    В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

    Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

    Сложение чисел в уме

    Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

    Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

    Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

    Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

    Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6.  Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

    356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

    Вычитание чисел в уме

    Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

    Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

    Теперь считаем: 528-300-20-1=228-20-1=208-1=207

    Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

    Умножение чисел в уме

    Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

    8*4=8+8+8+8=32

    Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

    Таблица умножения
    Таблица умножения

    Умножение многозначных чисел на однозначные

    Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

    528=500+20+8

    528*6=500*6+20*6+8*6=3000+120+48=3168

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

    Умножение двузначных чисел

    Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

    Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

    28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

    Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

    • 79*50=(70+9)*50=3500+450=3950
    • 79*7=(70+9)*7=490+63=553
    • 3950+553=4503

    Умножение на 11

    Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

    Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число - результат умножения исходного числа на 11.

    Проверим и умножим 54 на 11.

    • 5+4=9
    • 54*11=594

    Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами - эта хитрость работает!

    Возведение в квадрат

    С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

    Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

    Проверим! Возведем в квадрат число 75.

    • 7*8=56
    • 5*5=25
    • 75*75=5625

    Раньше все считали без калькуляторов
    Раньше все считали без калькуляторов

    Деление чисел в уме

    Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

    Деление на однозначное число

    При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

    Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

    6144:8=(5600+544):8=700+544:8

    Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

    544:8=(480+64):8=60+64:8

    Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

    64:8=8

    6144:8=700+60+8=768

    Деление на двузначное число

    При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

    При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

    Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет 0, так как 5*6=30. Действительно, 1325*656=869200.

    Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

    Сколько будет 4424:56?

    Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

    56*80=4480

    Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4. Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления  может быть либо число 74, либо 79. Проверяем:

    79*56=4424

    Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

    Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»
    Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

    Полезные советы

    В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

    • Не забывайте тренироваться каждый день;
    • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
    • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
    • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

    Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

    Оцените материал
    131 074 9
    Узнать стоимость
    Примеры работ
    Посмотрите примеры наших работ
    Мы выполнили 623 200 работ
    Управление персоналом
    Тема: «Теоретические характеристики обеспечения эффективных социально-трудовых отношений в современных экономико-управленческих процессах управления персоналом»
    Время выполения: 7 дней
    Стоимость заказа: 9 000 руб.
    Смотреть работу
    Экономическая социология
    Тема: «Проблемы и перспективы развития социальной защиты безработных в РФ»
    Время выполения: 8 дней
    Стоимость заказа: 9 500 руб.
    Смотреть работу
    Медицина
    Тема: «Гормональная фаза деятельности организма: состав и структурная организация эндокринной системы»
    Время выполения: 3 дней
    Стоимость заказа: 700 руб.
    Смотреть работу
    Психология
    Тема: «Виды психологического консультирования и их специфика»
    Время выполения: 2 дней
    Стоимость заказа: 500 руб.
    Смотреть работу
    Психология личности
    Тема: «Теоретические аспекты изучения готовности к выбору профессии и склонности к риску у старшеклассников с различным типом характера»
    Время выполения: 5 дней
    Стоимость заказа: 2 300 руб.
    Смотреть работу
    Педагогика
    Тема: «Основные возрастные особенности формирования учебной деятельности»
    Время выполения: 6 дней
    Стоимость заказа: 2 000 руб.
    Смотреть работу
    Экономика предприятия
    Тема: «Факторы, влияющие на оборачиваемость дебиторской задолженности»
    Время выполения: 8 дней
    Стоимость заказа: 2 000 руб.
    Смотреть работу
    Педагогическая психология
    Тема: «Отчет по психолого-педагогической практике»
    Время выполения: 9 дней
    Стоимость заказа: 2 300 руб.
    Смотреть работу
    Психология здоровья
    Тема: «Роль занятий физической культурой в процессе формирования психических качеств личности»
    Время выполения: 2 дней
    Стоимость заказа: 900 руб.
    Смотреть работу
    Гражданское право
    Тема: «Правомерное поведение, правонарушения и юридическая ответственность»
    Время выполения: 3 дней
    Стоимость заказа: 1 000 руб.
    Смотреть работу
    Комментарии (9)
    Написать комментарий
    Влад
    А какие именно упражнения надо делать?ответьте пожалуйста.
    Иван
    Влад, решайте обычные примеры в уме: сложение, вычитание, умножение, деление. Переходите от простого к сложному.
    Владимир
    Возведение в квадрат предложенным способом,не работает.
    Анжелика
    Очень интересно!
    Вика
    А я оказывается с самого детства считаю по приёму гаусса
    Иван
    Вика, это же прекрасно!)
    Алексей
    Здравствуйте, соглашусь с выше сказанным. Схема возведения в квадрат не работает для всех чисел, только для тех что оканчиваются на пять. В умножении на 11 тоже есть недостатки при сумме чисел больше 10, например 56*11, 5+6=11 схема не работает. А так в целом интересная статья и приемы.
    Иван
    Здравствуйте, спасибо!
    Anon
    Всё работает, просто прибавляйте получившуюся десятку к первому числу. 5+6=11 прибавляем десятку из 11 к 5 и оставляем оставшуюся единицу получается 616
    Оставить комментарий
    {$ errors.username[0] $}
    Вы уже наш клиент? Авторизуйтесь.
    {$ errors.email[0] $}
    Пользователь с таким email уже существует! Авторизуйтесь.
    {$ errors.content[0] $}
    Оставляя комментарий, я соглашаюсь на обработку своих персональных данных в соответствии с политикой конфиденциальности