Пределы в математике для чайников: объяснение, теория, примеры решений

Иван Иван Обновлено: 22 Октябрь 2019 311 586 14 Время чтения: 9 минут
Содержание
Содержание

    Теория пределов – раздел математического анализа. Наряду с системами линейных уравнений и диффурами пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

    В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

    Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

    Понятие предела в математике

    Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции , так как именно с ними чаще всего сталкиваются студенты. Но сначала - самое общее определение предела:

    Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.

    Для определенной в некотором интервале функции f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.

    Звучит громоздко, но записывается очень просто:

    понятие предела для чайников

    Lim - от английского limit - предел.

    Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

    Приведем конкретный пример. Задача - найти предел.

    вычислить пределы для чайников

    Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

    математический анализ пределы для чайников

    Кстати, если Вас интересуют базовые операции над матрицами, читайте отдельную статью на эту тему.

    В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

    пределы с нуля для чайников

    Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

    Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х. Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность. Что делать в таких случаях? Прибегать к хитростям!

    Решение пределов требует контроля
     

    Неопределенности в пределах

    Неопределенность вида бесконечность/бесконечность

    Пусть есть предел:

    пределы с подробным решением для чайников пошагово

    Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

    пределы объяснение

    Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

    задания по математике пределы

    Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.

    Пределы
     

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

    Еще один вид неопределенностей: 0/0

    В таких случаях рекомендуется раскладывать числитель и знаменатель на множители. Но давайте посмотрим на конкретный пример. Нужно вычислить предел:

    предел функции в точке для чайников

    Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

    как решать пределы для чайников с корнями

    Сократим и получим:

    объяснение пределов для чайников

    Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

    Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

    Математика. Таблица пределов
     

    Правило Лопиталя в пределах

    Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

    Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

    Наглядно правило Лопиталя выглядит так:

    пределы математика для чайников

    Важный момент: предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

    А теперь – реальный пример:

    Правило Лопиталя

    Налицо типичная неопределенность 0/0. Возьмем производные от числителя и знаменателя:

    Правило Лопиталя для чайников

    Вуаля, неопределенность устранена быстро и элегантно.

    Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос "как решать пределы в высшей математике". Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.

    Оцените материал
    311 586 14
    Узнать стоимость
    Примеры работ
    Посмотрите примеры наших работ
    Мы выполнили 623 198 работ
    Управление персоналом
    Тема: «Теоретические характеристики обеспечения эффективных социально-трудовых отношений в современных экономико-управленческих процессах управления персоналом»
    Время выполения: 7 дней
    Стоимость заказа: 9 000 руб.
    Смотреть работу
    Экономическая социология
    Тема: «Проблемы и перспективы развития социальной защиты безработных в РФ»
    Время выполения: 8 дней
    Стоимость заказа: 9 500 руб.
    Смотреть работу
    Медицина
    Тема: «Гормональная фаза деятельности организма: состав и структурная организация эндокринной системы»
    Время выполения: 3 дней
    Стоимость заказа: 700 руб.
    Смотреть работу
    Психология
    Тема: «Виды психологического консультирования и их специфика»
    Время выполения: 2 дней
    Стоимость заказа: 500 руб.
    Смотреть работу
    Психология личности
    Тема: «Теоретические аспекты изучения готовности к выбору профессии и склонности к риску у старшеклассников с различным типом характера»
    Время выполения: 5 дней
    Стоимость заказа: 2 300 руб.
    Смотреть работу
    Педагогика
    Тема: «Основные возрастные особенности формирования учебной деятельности»
    Время выполения: 6 дней
    Стоимость заказа: 2 000 руб.
    Смотреть работу
    Экономика предприятия
    Тема: «Факторы, влияющие на оборачиваемость дебиторской задолженности»
    Время выполения: 8 дней
    Стоимость заказа: 2 000 руб.
    Смотреть работу
    Педагогическая психология
    Тема: «Отчет по психолого-педагогической практике»
    Время выполения: 9 дней
    Стоимость заказа: 2 300 руб.
    Смотреть работу
    Психология здоровья
    Тема: «Роль занятий физической культурой в процессе формирования психических качеств личности»
    Время выполения: 2 дней
    Стоимость заказа: 900 руб.
    Смотреть работу
    Гражданское право
    Тема: «Правомерное поведение, правонарушения и юридическая ответственность»
    Время выполения: 3 дней
    Стоимость заказа: 1 000 руб.
    Смотреть работу
    Комментарии (14)
    Написать комментарий
    Марина
    а как решать если и в числителе и знаменателе дискриминантные уравнения ?
    Иван
    Марина, все так же. Если при подстановке значения, к которому стремится икс, в числителе и знаменателе получаются нули, неопределенность типа 0/0 нужно раскрыть одним из описанных способов.
    Алексей
    стремится (что делает) без мягкого знака, исправьте статью.
    Иван
    Спасибо за внимательность, исправили
    кисэй
    Lim(3x)/корень 3 - корень (3-х) как расписывается?
    Иван
    Надо посчитать. Но условие не полное. К чему стремится икс?
    Александр
    спасибо
    Константин
    подскажите решение плз lim (x-0)=(1-cos^3x)/(x*sin2x)
    Иван
    Ответ: 3/4
    Юлия
    Главное для меня доступно обьяснено
    Александр
    Подскажите, пожалуйста, всё тоже самое, но для пределов числовых последовательностей.
    Иван
    Александр, принято! Подготовим материал
    Александр
    Подскажите, пожалуйста, когда будет готова статья по числовым последовательностям?) Экзамен уже вот-вот.)
    Иван
    Мы поторопимся!)
    Оставить комментарий
    {$ errors.username[0] $}
    Вы уже наш клиент? Авторизуйтесь.
    {$ errors.email[0] $}
    Пользователь с таким email уже существует! Авторизуйтесь.
    {$ errors.content[0] $}
    Оставляя комментарий, я соглашаюсь на обработку своих персональных данных в соответствии с политикой конфиденциальности